
Congestion-Oriented Shortest Multipath Routing
Shree Murthy J.J. Garcia-Luna-Aceves

Computer Engineering Department
University of California
Santa Cruz, CA 95064

Abstract

We present a framework for the modeling of multipath rout-
ing in connectionless networks that dynamically adapt to network
congestion. The basic routing protocol uses a short-term metric
based on hop-by-hop credits to reduce congestion over a given
link, and a long-term metric based on end-to-end path delay to
reduce delays from a source to a given destination. A worst-case
bound on the end-to-end path delay is derived under three archi-
tectural assumptions: each router adopts weighted fair queueing
(or packetized generalized processor sharing) service discipline
on a per destination basis, a permit-bucket filter is used at each
router to regulate traffic flow on a per destination basis, and all
paths are loop free. The shortest multipath routing protocol reg-
ulates the parameters of the destination-oriented permit buckets
and guarantees that all portions of a multipath are loop free.

1. Introduction

Efficient routing results in smaller average packet delays,
which means that the flow control algorithm can accept more
traffic into the network. On the other hand, an efficient flow con-
trol algorithm rejects excessive offered load that would necessarily
increase packet delays by saturating network resources. It is clear
that routing and congestion control are very much interrelated.

A drawback of existing internet routing protocols is that their
main routing mechanisms (route computation and packet forward-
ing) are poorly integrated with congestion control mechanisms.
More specifically, today’s internet routing is based on single-path
routing algorithms; even in theory, a routing protocol based on
single-path routing is ill suited to cope with congestion, because
the only thing the protocol can do to react to congestion is chang-
ing the route used to reach a destination. However, as has been
documented in [1], allowing a single-path routing algorithm to
react to congestion can lead to unstable oscillatory behavior. Fur-
thermore, for connectionless service, any datagram offered to the
network is accepted; although routers forward packets only on a
best-effort basis and drop them when congestion occurs, the steps
taken by routers occur after the packets have been allowed to con-
gest the network, and it is up to the transport protocol to react to
congestion after network resources are already being wasted.

The work reported in this paper was motivated by our con-
jecture that architectural elements similar to those used in a
connection-oriented architecture to allow the network to enforce
performance guarantees could be used to integrate routing with
congestion control, and to provide some delay guarantees for the
delivery of those datagrams that are accepted in the network. We
propose a new framework and protocol for dynamic multipath
routing in packet-switched networks that attempts to prevent over
utilization of network resources and hence congestion. Packets
are individually routed towards their destinations on a hop by hop

* This work was supported in part by the Office of Naval Research under Contract
No. N-00014-92-J-1807 and by the Advanced Research Projects Agency (ARPA)
under contract F19628-93-C-0175

basis. A packet intended for a given destination is allowed to enter
the network if and only if there is at least one path of routers with
enough resources to ensure its delivery within a finite time. In
contrast to existing connectionless routing schemes, once a packet
is accepted into the network, it is delivered to its destination, un-
less resource failures prevent it. Each router reserves buffer space
for each destination, rather than for each source-destination ses-
sion as it is customary in a connection-oriented architecture, and
forwards a received packet along one of multiple loop-free paths
towards the destination. The buffer space and available paths for
each destination are updated to adapt to congestion and topology
changes.

Our framework is based on three main architectural elements:
(a) traffic shaping by means of destination-oriented permit buck-
ets; (b) traffic separation and scheduling on a per destination basis;
and (c) the dynamic maintenance of multiple loop-free paths that
always attempt to reduce the delay from source to destination.
Permit buckets consist of permits or tokens fed by periodic up-
dates of credits. To schedule packet transmission, we assume a
packet-by-packetgeneralized processor sharing (PGPS) server [9]
at each node. To establish loop-free multipaths, we extend prior
results on loop-free single-path routing algorithms introduced in
[5]. This results in a congestion-oriented multipath routing archi-
tecture that uses a short-term metric based on hop-by-hop credits
to reduce congestion over a given link, and a long-term metric
based on end-to-end path delay to reduce delay from source to
destination. The main contribution of this work is to illustrate the
provision of performance guarantees in a connectionless routing
architecture.

Section 2. describes the network model used in our protocol.
Section 3. gives a detailed description of the new routing protocol.
Section 4. derives worst-case steady-state delay bounds for pack-
ets accepted into the network by extending the analysis described
in [10]. Section 5. presents our conclusions.

2. Network Model

A computer network is modeled as an undirected finite graph
represented by

���������
	
, where

�
is the set of nodes and

�
is the set of edges or links connecting the nodes. A functional
bidirectional link connecting nodes � and � is represented as

� � � � 	
and is assigned a positive weight in each direction. A link is
assumed to exist in both directions at the same time. All routing
messages that are received (transmitted) by a node are put in the
input (output) queue on a FCFS basis and are processed in that
order. Each node is represented by a unique identifier and the
link costs can vary in time but are always positive. The distance
between any two given nodes is measured as the sum of the link
costs of the path between the nodes.

A path from node � to node � is a sequence of nodes,� �� 1
�����������������

, where
� � �� 1

	
,
�����������

1
	
,
������ � 	 are links in

the path. A simple path from � to � is a sequence of nodes in
which no node is visited more than once. A multipath from � to �

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
Congestion-Oriented Shortest Multipath Routing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 z

i
s

j

a yx

x

y
Data

Permit Bucket

Permit Bucket

 z

Fig. 1. Credit Aggregation

is a set of simple paths from � to � . The paths between any pair
of nodes and their corresponding distances change over time in
a dynamic network. At any point in time, node � is connected
to node � if a physical path exists from � to � at that time. The
network is said to be connected if every pair of operational nodes
are connected at a given time.

3. Protocol Description

The new protocol can be divided into three functional elements,
namely: packet scheduling and transmission, congestion-based
credit mechanism and maintenance of multiple loop-free paths.

Scheduling at a node is done by maintaining permit bucket
filters at each node for all active destinations. A weighted fair
queueing mechanism is used for fairness [4]. Routing is done on
a hop-by-hop basis independently at each node.

To forward packets to a given destination, the protocol uses
two routing metrics: a short-term metric based on hop-by-hop
credits to reduce congestion along a link, and a long-term metric
based on path-delay to minimize end-to-end delay.

The routing variables associated with each link is determined
by periodically monitoring traffic on the incoming and the outgo-
ing links at each node through each neighbor. Given the capacity
of each link, the utilization of the link can also be determined.
Credits are reassigned to upstream neighbors depending on the
traffic flow on each of the incoming links. A multipath routing
algorithm based on DUAL [5] maintains multiple loop-free paths.
Each time the network state changes, paths are recomputed and
the new network state is obtained. This is made possible by the
periodic exchange of routing information.

Each node maintains a routing table, a distance table, a link
cost table and a link credit table. The distance table at node � is a
matrix that contains, for each destination � and for each neighbor�

, routing (cost and credit) information along with the distance
("!�$#) reported to node � by node

�
regarding destination � , and a

successor flag (%'&)(+*,!��#) indicating whether neighbor
�

belongs to
the shortest multipath set, for destination � . Node � ’s routing table
is a column vector containing the routing information about the
shortest path to all destinations; it maintains information about the
distance (!�), successor (- !�), and the routing parameters (credits
and delay). The neighbor nodes used for packet forwarding from
node � to node � are said to belong to the shortest multipath from� to � , denoted by .0/ !� . If the neighbor node belongs to .0/ !� ,
then %�&1(+* !�$# is set to 1; otherwise it is set to 0. The link cost table
maintains the distance information about all the neighboring links
and the link-credit table maintains information about the credits
available through all the neighboring links for each destination.

3.1 Packet Scheduling and Transmission Scheme
Packet scheduling is done by means of permit bucket filters

for each destination. The packet-by-packet generalized processor
sharing (PGPS) scheme is used at each server [9]. Packets are
transmitted as individual entities. A packet is said to have arrived
only after the last bit has been received at a node. The server picks
up the first packet that would complete service if no additional
packets would arrive. Routing is done on a per destination basis
over multiple paths.

Note that, because all the nodes along any path from a source
to a given destination can contribute to the flow to that destination,
each node is modeled as a PGPS server to regulate the incoming
traffic, instead of just having a simple scheduling discipline at the
intermediate nodes as can be assumed in a connection-oriented ar-
chitecture [10]. This scheme, along with the credit-based conges-
tion control mechanism, ensures that the bursty nature of sources
does not affect the routing architecture.

The protocol uses two routing metrics for transmitting packets
to a given destination: a short-term metric based on hop-by-hop
credits to reduce congestion along a link, and a long-term metric
based on path-delay to minimize end-to-end delay along the paths.
The number of packets sent to a neighbor depends on the credits
available through that neighbor. Credits for a destination are sent
from a destination towards the source along the reverse paths
implied by the routing tables. When a node becomes operational,
depending on the availability of resources at each node, credits
are distributed among its neighboring nodes.

The traffic at each node is regulated by permit-buckets, inde-
pendently for each destination. In the traditional leaky bucket
congestion control scheme, buckets are session oriented. Data
packets accepted from the transmitter and the average rate of flow
is controlled by a burst rate for a source-destination session. In
our scheme, permit buckets (which are similar to leaky buckets)
are destination oriented. For a given destination � , credits arrive
to a given node � at a rate 2 !� , which is called the token generation
rate for destination � at node � . The bucket size, denoted by 34!� ��5�	
gives the maximum number of packets that can be transmitted
from � to � at time

5
. This determines the burstiness of traffic, and3�!� ��56	 is defined for each destination � at time

587
0 as

3 !� ��56	:9 & !� ��56	�;=< !� ��56	 (1)

where & !� ��5�	 is the number of left-over credits (or tokens) in the
bucket at node � for destination � at time

5
, and

< !� ��56	 is the
backlog for destination � at time

5
. This definition is much the

same given in [9], the only difference being that here we maintain
leaky-bucket parameters for each active destination rather than for
each session.

Destination-based credits are aggregated at each node. Each
hop is considered as a source; credits sent by the downstream
nodes are aggregated at each hop for a given destination and are
redistributed among its upstream neighbors. The total available
credits at each node for a given destination is the sum of the credits
received from its downstream neighbors for that destination. In
Figure 1, if > is the number of credits received by node (from
its downstream neighbors to destination � , then node (maintains
a permit bucket of size > . These credits are redistributed among
its upstream neighbors depending on the traffic flow along links� � � (and

� - � (as ? and @ .
The number of credits left behind denoted by & !� , is the differ-

ence in the number of arrivals and the number of credits that
arrive within a given time interval. Accordingly, & !� ��A,��5�	B9C !� ��A,��5�	+DFE G !� ��5�	+DHG !� ��A�	JI , where

G !� ��56	 is the number of credits

j

i WCR

u i

destination j

D
at

a
 P

ac
ke

ts

ca b

x y z

C
re

di
tsSM

d ei

Fig. 2. Multipath Tree

that arrive at node � at time
5

for destination � and
C !� ��AK��56	 is the

traffic arriving at node � for destination � in the interval
��AK��5LI

. The
total number of accepted credits in a time period should be less
than the credit generation rate. Therefore, with

A"MN5
,

G !� ��56	ODPG !� ��A�	QM 2 !� ��5ODPA�	 (2)

and 3 !� ��A,�$56	R7SC !� ��A,��5�	8D 2 !� ��5�DSA�	4;N< !� ��AK��56	 (3)

For the time interval
��54D

∆
5$�T56	

we can write Eq. 3 as:

3 !� ��56	R7SC !� ��56	0D 2 !� ��56	�;N< !� ��5�	 (4)

2K!� is related to the number of total available credits at time5
and is the sum of the credits available through all the nodes

downstream of node � . Consider Figure 2, the total number of
credits available at router � for destination � is the sum of the credits
available from its downstream neighbors (, U , and V for destination� . The total number of packets transmitted to destination � from
node � cannot exceed the total available credits at � for � at time

5
.

The number of available credits also depends on the traffic flow
on that link which is a measure of the congestion level of that link.

3.2 Credit-Based Congestion Mechanism

Congestion over a given link is controlled by a hop-by-hop
credit-based mechanism. Each node selects a path to a destination
based on the bandwidth available through a given link, utilization
of that link, and the distance to the destination. The chosen path
is subjected to a constraint that the bandwidth available is at least
equal to the required bandwidth, and the total bandwidth allocated
through a link is less than the capacity of that link. The available
bandwidth is then translated into credits. A credit given by a node
to its upstream neighbors for a given destination represents the
number of packets that a node can accept from its neighbors for a
destination. Credits are sent to upstream nodes along the specified
reverse direction of the routing table.

Figure 3 presents a formal description of the allocation scheme.
Procedure Initialize indicates the action taken by a node when it
becomes active for the first time. Procedure Receive describes the
functions performed by a node when a node receives a periodic
update.

3.2.1 Initialization

The number of credits available at each node is determined by
the buffer space available at that node (/W(K?�X�Y'%�- �). A part of the

total available credits (Z\[]-�[]^`_+[) is reserved for fast reservation
mechanism. A fast reservation mechanism is used to allocate
credits to a new node when it becomes a part of the loop-free path
to a given destination. This mechanism sends a minimum number
of credits to the new shortest multipath neighbor as explained
below. This speeds up the credit allocation process, thus avoiding
slow start. The remaining credits, a
Z !� , are equally distributed
among the neighboring nodes,

� ! , on startup. This is termed as
the weighted credit bca
Z !�$# . The delay incurred for the credits
to reach neighbors is incorporated while computing the available
credits.

On initialization, credits are equally distributed among neigh-
bors since there will not be any traffic on any of the links of a
newly established node. Credits are dynamically assigned there-
after among all the active flows, depending on the traffic flow
through each of the links. When an operational node � recognizes
that a new neighbor has become operational, it sends a fixed min-
imum number of credits (a
Zed !�f) to its new neighbor indicating
that � can be a possible multipath successor. When node � selects
neighbor

�
as one of its multiple successors to a destination, it sets

the successor flag in the update message (%'&)(+* !��#) to that neighbor
to indicate that the neighbor now belongs to .0/ !� . When node

�
recognizes this, it includes the node in its set of active neighbors
and sends minimum credits to the neighbor and redistributes its
credits for that destination. This information is communicated to
other nodes in the next update interval. The total credits sent to the
upstream neighbor is limited by the total available credits at that
node. Credit information at each node is updated periodically.

Each routing node resets its traffic counters and monitors the
incoming and outgoing traffic for all its neighbors. Based on this
statistics, the routing parameters g !��# are computed. The permit
bucket parameters are also initialized for each destination. The
token generation rate 2 !� is initialized to the sum of the credits
available through all the neighbors of � to a given destination �
in the given time period. The bucket size 3 !� is initialized to the
number of leftover packets since on initialization there will not be
any backlog.

3.2.2 Steady State

A periodic update timer is maintained at each router to ex-
change credit information periodically. Each router monitors its
traffic on its incoming and outgoing links every ∆t seconds (up-
date interval). The update interval ∆t should be longer than the
maximum round trip time (RTT) delay between two nodes in the
network. Each time an update is sent, the timer,

5 �ih"[+^`!� , is reset
(Figure 3).

At each node, credits received from all downstream nodes are
aggregated and are redistributed to the upstream neighbors. This
can be done because the total bandwidth allocated at each link at
any given time is no more than the capacity of that link. A node can
send data packets to a downstream neighbor only if the credit value
through that neighbor is greater than zero. Also, because at each
hop credits are distributed based on the traffic flow, the algorithm
ensures that information about active destinations is maintained,
i.e., those for which data traffic needs to flow from or through the
node. When a new destination for which the bandwidth is not
reserved becomes active, or when a node becomes a part of the set
of loop-free paths to a destination, credits are redistributed using
a fast reservation mechanism.

Each node monitors the traffic flowing through it periodically
and determines the traffic flow on each of its links for all desti-
nations. It also computes the end-to-end delay associated with

Variables:j�kl6m : credits occupied by packets in transitn kl : credits due to packets already in queue

Procedure Initialize
when router

k
initializes itself

begin o'p'klRqsret�u�vxw�y�z lO{ p�| z |�}�~�|
do for �0��� k
begin� o'p'kl � q

o'p'kl� � k �y m t�� kl � q 0

end
Send credit information to all u ��� k at next
update interval
Reset � k�� |$} kl

end

Procedure Receive(�)
when a periodic update is received (� k�� |�} kl expired)

begin
if ((y m t�� kl �R� 1 �]�Q� �R���� r kl))
� o'p kl � q o�p �0k�� ; � r kl�q � r kl�� �

if ((y m t�� kl �R� 0 �]�Q� ����� r kl))
� o'p kl � q 0; � r kl�q � r kl { �� � �R� k begin
if
� ��� r kl�y m t�� kl � q 1

else y m t�� kl � q 0

end
redistribute credits among shortest path
neighborso'p k��l qs� m �]� r kl

� o'p kl�m { j kl�mo'p'klRq o'p'k �l { n kl� o'p�kl � q o'p�kl:��� kl � � k �Q� r �l
Send credit information to all u ��� k at next
update interval
Reset � k�� |$} kl

end

Fig. 3. Credit Distribution Mechanism

packets to each destination. If the measured delay does not sat-
isfy the required QoS, that successor will no longer be selected
as a feasible successor to that destination and this information is
communicated to all the neighboring nodes. It then determines
the total available credits for a given destination � and the credits
are redistributed among its upstream neighbors after reserving a
fraction of the credits for the initialization phase. The philosophy
behind this mechanism is similar to a fast bandwidth reservation
scheme in which, the data transmission begins before a connection
has been completely established.

Figure 4 shows the distance table at node � for destination � for
the configuration in Figure 2. The flag field indicates whether the
neighbor belongs to the shortest multipath set or not. The distance
gives the sum of the link costs along the path to destination � and
credits gives the number of available credits through that path. A
credit of 0 implies that packets cannot be forwarded through that
path.

The number of credits available at a node is determined by the
flow on its links and the total traffic seen by a node. If % #� ! is the
incoming flow on link

�i��� � 	 to destination � as seen by node � ,
and ^ !� is the traffic originated at � for destination � , we define the
total input traffic seen by � for destination � as the sum of all the
incoming traffic at node � , and denote it by

5 !� . Furthermore, by
the conservation of flow, the sum of all the traffic arriving at a
node must be equal to the sum of all the traffic departing from a
node for each destination � . Therefore, for destination � , the total
incoming flow is equal to the total outgoing flow at node � , and

5 !� 9 �#�� !L���]� �l
E % #� ! I,; ^ !� 9 �

d �
�]� kl
% !� d (5)

For convenience, a routing variable, denoted by g !��# , is defined
for each link

� � ����	 as the ratio of the flow on each link with respect

FlagDestination Distance Credits

 j

 j

 j

 j

 j

 j

 j

 j

a

c

d

e

x

Neighbor

y

z

b

1

1

1

0

0

0

0

0

a1

b1

c1

d1

e1

b2

c2

0

0

0

0

0

a2

x1

y1

z1

Fig. 4. Distance Table at node i for destination j

to the total flow on all outgoing links for a given destination � .
From Eq. 5 and with

� ! denoting the neighbor set of � , we have:

g !��# 9 % !�$#5 !��� �� s� ! (6)

Because node � itself can also contribute to the total traffic, by
the conservation of flow, it must be true that�# ���]� kl

g !��# M 1 (7)

The distribution of credits to upstream neighbors depends on
the traffic flow on that link, which in turn depends on the routing
variable g !� associated with that link. The number of credits a
node sends to an upstream neighbor is called the weighted credit
(WCR). Credits are weighted by the traffic flow on a given link.
The token generation rate for a given update period ∆t can now
be defined as

2 !� ��56	09 a
^�[�¡�� 5 -¢(�_+(��)&)(KU�&)[
� Y�£�¡K(5 [0£'[]^`�)¤+¡eU�[]%'¤K^�[5
∆
5

2 !� ��56	:9 � �]� kl#�¥
1 b¦a
Z !��# ��5�	

∆
5 (8)

To obtain a correct estimate of the credits available at each
node at any given time, we need to take into account the delay
associated with the propagation of credits. This can be done
either by estimating the credits available as in [6] or by explicitly
sending a marker. We opt for the estimation mechanism. Here,
credits are sent to the immediate upstream neighbor, i.e., they
propagate only one hop. The update period used for updating
routing information is considered as one round-trip delay by a data
packet. Therefore, to obtain a correct estimate of the available
credits at a node, we have to take into account the data packets
that the sender has already forwarded over the link for the past
round-trip time (RTT) and the data packets that are already queued
from the past RTT. Therefore, the total available credits at node� for a destination � , denoted by a
Z !� , is the difference between
the sum of all the weighted credits available from its downstream
neighbors ¡ ! (equivalently, sum of all the credits on its outgoing
links) belonging to the shortest multipath and the credits which
are already being used, i.e.,

a
Z !� 9 �
§ �
�]� kl

E bca
Z !� § D £ !� § I'DP¨ !� (9)

where bca
Ze!� § is the weighted credit obtained from the down-
stream neighbor & over an update period (which depends on the
flow on the link (� � &)), £ !� § is the number of credits occupied by the
packets that are already in transit on link

� � � & 	 , and
¨ !� is the num-

ber of credits due to the data packets that are already in the queue
at node � for destination � which were not completely transmitted
since the previous update period. If a node does not have credits
for a given destination � , then a
Z !� is set to zero.

The correctness of the credit based mechanism (i.e., showing
that it has no deadlocks and that packets are not dropped) can be
proven in a similar way as for virtual-circuit connections [8]. For
the purposes of such a proof, it must be assumed that initialization
of the protocol is done properly, that there are no link errors, and
that there are no link and node failures.

3.3 Maintenance of Loop-Free Multipaths

The primary objective of maintaining multiple loop-free paths
is to minimize the end-to-end path delay by reducing network
congestion along the path. The distance reported by neighbor

�
to

node � for destination � is denoted by "!��# and node � ’s distance
to its neighbor

�
is denoted by ¡ ! # . The distance to neighbor

�
is

the sum of the propagation delay ©+!# and the per hop packet delay
through neighbor

�
, ¡ !��# . i.e., ¡ ! # 9 ¡ !�$# ; © !# . The path delay at

node � along node
�

at a given time
5
, denoted by ˘ "!��# is

˘ !��# 9 !�$# ; ¡ ! #
The shortest multipath set of � for destination � (.0/ !�) are

those neighbors of � that provide loop-free paths to � . The delay
at node � to destination � at time

5
is computed as the weighted

average path delay through all the nodes in the shortest multipath
at node � ; it is denoted by F!� ��5�	 . This delay is weighted by the
fraction of the traffic going through that path, i.e.,

ª !�K«)¬��® �# ���]� kl`¯�°�±
² !�$# «)¬��³ ˘ª !��# «)¬��® �# ���]� kl`¯�°�±

´ !��# «1¬�¬ !� «1¬� ³ ˘ª !�$# «1¬6
(10)

The flow from � to each neighbor in .0/¦!� depends on the
credits available through that neighbor. Assuming that packets
are of fixed size and that each packet corresponds to one credit,
we can say that a packet flows on a link if at least one credit is
available on that link. This implies that the number of packets
that can flow on a link is equal to the number of credits available
through that link; therefore,

 !� ��56	:9 15 !� ��56	 �# ���]� kl ¯µ°�±
E bca
Z !��# ��5�	¶� ˘ !��# ��56	JI (11)

If the packets are of variable lengths, the packet length is a
multiple of credits and for simplicity we can assume that each
packet requires a credits on an average. The total number of
packets transmitted along a link with bca
Ze!�$# credits is a constantG

times the total available credits; therefore,

 !� ��5�	09 G5 !� ��5�	 � �
§ ���]� kl`¯�°�±

bca
Z !� § ��5�	¶� ˘ !� § ��5�	 (12)

Multiple loop-free paths from each node to a destination are
maintained by means of a shortest multipath routing algorithm
(SMRA), which is based on DUAL [5]. Any change in distance
is notified by event-driven update messages. An update message

from router � consists of a vector of entries; each entry specifies a
destination � , an update flag,a successor flag, the reported distance
to that destination and the reported credits available to destination� through that neighbor. The update flag indicates whether the
entry is an update (Y !� 9 0), a query (Y !� 9 1) or a reply to a query
(Y !� 9 2).

A detailed specification of SMRA is given in [7]. A router �
can be active or passive for destination � at any given time. Node �
is active for destination � if it is waiting for at least one reply from
a neighbor, and is passive otherwise. A router � initializes itself in
passive state with an infinite distance to all its known neighbors
and a zero distance to itself. The maximum allowable distance
to reach neighbor, defined below, is also set to · . Routers send
updates containing distance and credit information for themselves
to all their neighbors. When the destinations become operational,
routers inform their neighbors about the available credits to all
other nodes.

Credit information is updated periodically while the distance
information is exchanged among neighbors when the state of
the network changes. Each routing update updates the cost and
the credit information. An update can be a full routing table or
increments of the routing table in different update messages. After
initialization, only incremental updates are sent.

For a given destination, a router updates its routing table dif-
ferently depending on whether it is passive or active for that
destination. A router that is passive for a given destination can
update the routing-table entry for that destination independently
of any other routers, and simply chooses as its new distance to the
destination to be the shortest distance to that destination among all
neighbors, and as its new feasible successor to that destination to
be any neighbor through whom the shortest distance is achieved.
In contrast, a router that is or becomes active for a given destina-
tion must synchronize the updating of its routing-table entry with
other routers.

When a router is passive and needs to update its routing table
for a given destination � after it processes an update message from
a neighbor or detects a change in the cost or availability of a link
or a change in the credit information, it tries to obtain a feasible
successor. From router � ’s standpoint, a feasible successor toward
destination � is a neighbor router

�
that satisfies the maximum

allowable distance condition (MADC) given by the following two
equations [5]:

 !� 9 !��# ; ¡ ! # 9 /¦� �¸ !��¹ ; ¡ ! ¹»º £ ¼� !i½ !�$#¿¾ / C !� (13)

where / C !� is the maximum allowable distance for destination� , and is equal to the minimum value obtained for !� since
the last time router � transitioned from active to passive state
for destination � . Router � adjusts / C "!� depending on the
congestion level of the network.

If router � finds a feasible successor, it remains passive and
updates its routing-table entry as in the Distributed Bellman-Ford
algorithm [2]. Alternatively, if router � cannot find a feasible
successor, it first sets its distance equal to the addition of the
distance reported by its current successor plus the cost of the
link to that neighbor. The router also sets its maximum allowable
distance equal to its new distance. After performing these updates,
the router becomes active by sending a query in an update message
to all its neighbors; such a query specifies the router’s new distance
through its current successor. It then sets the destination’s reply-
status table entry for each link to one, indicating that it expects a

reply from each neighbor for that destination.
Once active for destination � , router � cannot change its fea-

sible successor, / C !� , the value of the distance it reports to its
neighbors, or its entry in the routing table, until it receives all the
replies to its query. A reply received from a neighbor indicates
that such a neighbor has processed the query and has either ob-
tained a feasible successor to the destination, or determined that it
cannot reach the destination. Once node � obtains all the replies to
its query, it computes a new distance and successor to destination� , updates its feasible distance to equal its new distance, and sends
an update to all its neighbors.

Multiple changes in link cost or availability are handled by
ensuring that a given node is waiting to complete the processing
of at most one query at any given time. The mechanism used to
accomplish this is specified in [5], and is such that a node can be
either passive or in one of four active states, and it processes any
pending update or distance increases that occurred while it was
active. The state of node � for destination � is denoted by the flag¤ !� .

Ensuring that updates stop being sent in the network when
some destination is unreachable is easily done. If node � has set !� 9 · already and receives an input event (a change in cost or
status of link (� �x�), or an update or query from node

�
) such that !��# ; ¡ ! # 9 · , then node � simply updates !�$# or ¡ ! # , and sends

a reply to node
�

with Ze !� 9 · if the input event is a query
from node

�
. When an active node � has an infinite maximum

allowable distance and receives all the replies to its query such
that every neighbor offers an infinite distance to the destination,
the node simply becomes passive with an infinite distance.

When node � establishes a link with a neighbor
�

, it updates
the value of ¡ ! # and assumes that node

�
has reported infinite

distances to all destinations and has replied to any query for which
node � is active. Furthermore, if node

�
is a previously unknown

destination, node � sets ¤K!# 9 1, -�!# 9À Y�&)& , and "!# 9 Ze "!# 9/ C !# 9 · . Node � also sends to its new neighbor
�

an update
for each destination for which it has a finite distance.

When node � is passive and detects that link
� � �0��	 has failed,

it sets ¡ ! #Á9 · and ˘ "!��# 9 · . After that, node � carries out
the same steps used for the reception of a link-cost change in the
passive state.

Because a router can become active in only one diffusing
computation per destination at a time, it can expect at most one
reply from each neighbor. Accordingly, when an active node �
loses connectivity with a neighbor

, node � can set ^�!� f 9 0 and !� f 9 · , i.e., assume that its neighbor

has sent any required

reply reporting an infinite distance. If node

is - !� , node � also
sets ¤ !� 9 0. When node � becomes passive again and ¤ !� 9 0,
it cannot simply choose a shortest distance; rather, it must find a
neighbor that satisfies the MADC using the value of / C !� set
at the time node � became active in the first place. After finding
a new successor, the permit bucket parameters 2 !� and 3 !� are also
updated.

Figure 5 gives a graphical representation of how MAD is up-
dated. The point at which a new diffusing computation starts is a
synchronization point. It can be noted that between two synchro-
nization points the value of MAD can only decrease or remain the
same.

To route packets to a destination � , each router uses the fol-
lowing rule to select the neighbor routers that should belong to its
shortest multipaths for � :
Shortest Multipath Condition (SMC): At time

5
, router � can make

node
�Â Á� ! ��56	 part of .0/ !� if and only if !�$# ��5�	 ¾ / C !� ��56	 .

di
st

an
ce

Q Q

MAD

All Replies in
First Successor

MAD
i
j = Min { D

i
 }

Initialization to infinity

Distance

 j

Synchronization
Point time

Fig. 5. Maximum Allowable Distance Condition

When nodes choose their successors using SMC, the path from
source to destination obtained as a result of this is loop free at every
instant. The proof of correctness and loop-freedom of SMRA is
basically the same as that provided in [5] for DUAL.

4. Worst-Case Steady-State Delays

In this section, we derive an upper bound on the end-to-end
steady-state path delay from node � to destination � (!)Ã�) as a
function of the credits available through each path under steady
state. Steady-state means that all distances and credit information
is correct at every router. This bound demonstrates that it is possi-
ble to provide performance guarantees in a connectionless routing
architecture. The delay experienced by a packet accepted into the
network is the time required by a data packet to reach its desti-
nation router from a source. This includes both the propagation
delay and the queueing delay. Path delay can also be interpreted
as the time it would take for a destination � backlog to clear when
there are no more arrivals after time

5
.

Parekh and Gallager have analyzed worst-case session delay
in a connection-oriented network architecture [10]. We adopt a
similar approach for each destination in a connectionless architec-
ture. To do this, we assume a stable topology in which all routers
have finite distances to each other. We also make use of the fact
that SMRA enforces loop-freedom at every instant on all paths in
the shortest multipath sets.

In a connectionless network where routes are computed dis-
tributedly, the path taken by a packet can change dynamically
depending on the congestion level in the network. Routing is
done on a hop-by-hop basis, independently at each router. There-
fore, the total traffic at a node will be the sum of the traffic on all its
links connecting to upstream neighbors. To obtain an expression
for the worst-case bound, we make the following assumptions:

1. Each node sends traffic to destination � as long as credits
are available (non-zero) for that destination along any of its
chosen paths.

2. At every node h , traffic for every destination is treated
independently.

3. Traffic arriving at a node � for destination � in the interval�
0
��5�	

(denoted by
C !�) is the sum of the traffic from all its

upstream neighbors to destination � and the traffic originated
at the node � itself, denoted by ^`!� ��56	 , i.e.,

C !� ��56	Ä9 ^ !� ��56	�; �
f,Å !)���]� �l ¯�°�±

% f� ! ��5�	 (14)

9 ^ !� ��56	�; �
§ � !)���]� ml ¯�°�±

g !� § ��56	¶� C !� § ��5�	 (15)

Each router in a connectionless network can itself be a source
to any given destination. At each node, traffic to destination � is
constrained by a permit bucket filter. The worst-case delay and
backlog is upper bounded by an additive scheme due to Cruz [3].
The rate at which the packets are serviced at each node depends
on the permit bucket or leaky bucket parameters 3 !� and 2 !� for
a given destination � . The parameter 3 !� gives the permit bucket
size and 2K!� the credit generation rate at node � . Therefore, the
number of packets that are being serviced at a node is a function
of 3�!� and 2K!� .

The minimum service rate * !� d at any node � is the fraction of
the input traffic at node � for destination � . The fraction of the
traffic is determined by the ratio of the routing variables of the
links, which is a function of the traffic flow; Therefore,

* !� d 9 g !� d
� �]� kl�¯µ°�±#�¥

1 g !��#
5 !� (16)

The minimum clearing rate of a given path is * �§ 9
min d ��Æ ¯ !)Å � ± *�!� d . When * �§ÈÇ 2 §� , the system with respect to
destination � is said to be locally stable. The input traffic rate
at node � to destination � is the sum of all the incoming traffic
destined for � for which � is the intermediate node and the traffic
originated at � itself (Eq. 5). With these constraints, the bound on
the delay for a given destination can be obtained using a similar
approach as in [10].

The delay on a link
� � ���'	 (per hop delay) ¡ !�$# for a given

destination � is the sum of the queueing delay and the propagation
delay on that link. The link propagation delay (© !#) depends
on the congestion level of the link as well as the link capacity.
Propagation delay is defined as the time taken for a packet to
reach a destination from a source. Every packet is time-stamped
when it leaves a node and the time at which the packet reaches
the neighbor is noted. The difference between the two gives a
one-hop delay. The average of this delay over a given period of
time gives the propagation delay ©]!# .

The queueing delay is the time a packet has to wait at a node
before it is processed. The waiting time of a packet depends on
the number of packets already present in the queue at the time
a packet arrives. This is referred to as the backlog at node � for
destination � and is denoted by

< !� . Therefore, the delay on link� � � & 	 for destination � at time
5

is

¡ !� § ��56	09 © !§ ��5�	4;N< !� § ��5�	¶� © !§ ��56	:9 © !� ��5�	¶E 1 ;=< !� § ��56	JI (17)

The backlog number of packets for a given destination � at a
given time

5
can be defined as the difference in the incoming and

the outgoing traffic at a node, i.e.,< !� ��5�	�9=C !� ��5�	8D . !� ��56	 (18)

This takes into account both the processing delay and the
queueing delay experienced at each hop. For every interval

��A,��5)I
,

. !� ��A,�$56	R7É��54DSA�	 * �! (19)

If the minimum clearing time * �! is greater than the token
generation rate 2K!� for a given destination, we can obtain a bound
on the backlog and hence the path delay. Let

A ¾ 5
be the

time at which there are no backlogged packets in the network.
Then, because * !� 7 2 !� and all the destinations are permit bucket
constrained,

. !� ��AK��56	R7É��5ODBA�	 2 !� ��5xDPA�	 (20)

4.1 Negligible Packet Size

We first obtain a bound on end-to-end path delay assuming
that the size of the packet may not contribute significantly to the
delay component. The arrivals at each node � is the sum of the
arrivals at all the upstream nodes for destination � and the traffic
originated at node � itself. For all

5�7NA"7
0 we have,

C !� ��AK��56	:9 ^ !� ��AK��56	�; �
§ � !L���]� ml`¯�°�±

g !� § ��A,��5�	¶� C §� ��AK��56	 (21)

The maximum backlog traffic
< !)Ã� for destination � is the

difference between the arrivals in the interval
��A,��5)I

and the total
packets serviced in the same interval at node � . For g !� §4Ç 0,

< !)Ã� ��AK��56	ÊM C !� ��AK��56	OD . !� ��A,��5�	 (22)< !)Ã� ��AK��56	ÊM ^ !� ��A,�$56	8D . !� ��AK��56	; �
§ � !L���]� ml`¯�°�±

E g !� § ��A,�$56	¶� C §� ��A,��5�	JI (23)

< !)Ã� ��AK��56	ÊM E ^ !� ��56	OD ^ !� ��A�	JI'D . !� ��AK��56	; �
§ � !L���]� ml`¯�°�±

E g !� § ��A,�$56	¶� C §� ��A,��5�	JI (24)

The difference (^`!� ��56	+D ^�!� ��A�) determines the amount of traffic
arriving at node � in the interval

��5,DÂA�	
; the maximum of which is

the sum of the tokens available at node � and the tokens received in
the interval

��5�D»A�	
. At every node, each destination is constrained

independently by a permit bucket scheme. Following Parekh
and Gallager’s approximation [10], we assume the links to be
of infinite capacity. The results for the infinite capacity case
upper-bound the finite capacity case. In other words, the results
of infinite capacity can be used for any finite speed link. The
arrival and the service functions at each router can be translated to
permit bucket parameters which in turn depend on the maximum
tolerable path delay and the link flows. Substituting for the arrivals
and the number of packets serviced in terms of the permit bucket
parameters from the previous section we have

< !)Ã� ��A,��56	ÊM E 3 !� ��54DËA�	�; 2 !� ��54DËA�	JI�D 2 !� ��5ODPA�	; �
§ � !L���]� ml`¯�°�±

% !� §5 !� E 3 !� ��5ODPA�	O; 2 !� ��5ODPA�	JI

Because Ì kl�m° kl M 1 for any � and & .0/ !� ��56	 ,
< !)Ã� ��A,��5�	QM 3 !� ��5�D»A�	`; �

§ � !L���]� ml�¯�°�±
E 3 §� ��5�D»A�	`; 2 §� ��5�D»A�	JI (25)

Making
AH9c54D

∆
5
, we can write

< !LÃ� ��56	RM 3 !� ��5�	�; �
§ � !)���]� ml ¯µ°�±

E 3 §� ��5�	�; 2 §� ��56	JI

Therefore, the backlog at node � to destination � depends on
the leaky bucket parameters at node � and the permit bucket pa-
rameters of all the upstream neighbors of � for which node � is in
the shortest multipath set.

The delay at each node � can be computed as the weighted
average path delay through all its multipath neighbors; therefore,

 !� ��56	09 �# ���]� kl�¯�°�±
g !��# ��5�	 ˘ !��# ��5�	 (26)

The distance from � to � through neighbor
�

can be expressed
as the sum of the distance from

�
to � and the link cost from � to�

. The link cost is the sum of the distance and the propagation
delay of that link. Therefore,

˘ª !��# «)¬�Í® ª !��# «1¬��ÎÁÏ ! # «)¬��® ª !�$# «)¬��ÎÑÐ Ï !��# «1¬��ÎsÒ !# «1¬6)Óª !�]«)¬�Í® �# ���]� kl ¯µ°�±
² !�$# «)¬��Ð ª !��# «1¬6�ÎB«iÏ !# «1¬6�ÎÁÒ !# $«1¬�LÓ (27)

From Eq. 17, ¡ ! # ��56	09 © !# ��56	¶E 1 ;N< !� ��5�	JI , which implies that

 !� ��56	09 �# ���]� kl�¯�°�±
g !��# ��56	¶E !��# ��56	�; © !# ��5�	¶� 1 ;S< !� ��56	�	JI (28)

Because SMC must be satisfied by every
�Ô .0/ !� ��56	 , !��# ��56	 ¾ / C !� ��56	 . Then, if !� ��A�	 is the maximum path

delay from � to � at time
A

and
< !)Ã� ��56	 is the maximum backlog

from � to � at time
5
, we obtain from Eq. 28 that

 !LÃ� ��56	 ¾ �# ���]� kl`¯�°�±
E g !��# ��56	¶� © !# ��5�	¶� 1 ;S< !LÃ� 	¶��5�	JI

; / C !� ��56	 �# ���]� kl ¯�°�±
g !�$# ��5�	 (29)

Let the maximum link propagation delay of all the links from� to a node in .0/ !� ��56	 be

∆ !� ��56	:9 max# ���]� kl ¯�°�± © !
# ��56	

(30)

Therefore, the maximum path delay from � to � becomes

 !)Ã� ��5�	 ¾ ∆ !� ��5�	¿�# ���]� kl�¯�°�±
g !�$# ��56	¶E 1 ;N< !LÃ� ��56	JI

; / C !� ��56	 �# ���]� kl`¯�°�±
g !��# ��5�	 (31)

Noticing that
< !)Ã� ��56	 is independent of

�
and substituting Eq. 7 in

Eq. 31 we obtain

 !)Ã� ��56	 ¾ ∆ !� ��56	¶E 1 ;=< !)Ã� ��5�	JI�; / C !� ��56	 (32)

The above equation is an upper bound on !� ��5�	 that should
be expected. It states that "!� ��5�	 must be smaller than the sum of
the product of the backlog for � at node � times the maximum link
propagation delay in node � ’s shortest multipath, plus / C "!� ��56	 .
The first term of Eq. 32 corresponds to the delay incurred by
sending all backlogged packets at time

5
to a neighbor with the

longest link propagation delay. The second term corresponds
to the maximum delay incurred by any neighbor receiving the
backlog packets; because any such neighbor must be on .0/ !� ��56	 ,
that delay can be at most equal to / C !� ��5�	 .

Substituting Eq. 25 in Eq. 32, we can represent the same bound
in terms of permit bucket parameters as follows:

ª !)Ã�"«)¬�ÖÕ
∆ !�]«)¬�6× 1 Î�Ø !�K«)¬� �

§ � !L���]� ml�¯�°�±
Ð Ø §�+«1¬��ÎÁÙ §�]«)¬�Ú"Û�LÓ1Ü

Î:ÝßÞ ª !�]«)¬� (33)

The bound given by Eqns. 32 and 33 for router � is based on
a maximum delay offered by the neighbor of � and a maximum
backlog allowed at router � . This is possible because of two main
features of SMRA: datagrams are accepted only if routers have
enough credits to ensure their delivery, and datagrams are deliv-
ered along loop-free paths. In contrast, in traditional datagram
routing architectures, any datagram presented to a router is sent
towards the destination, and the paths taken by such datagrams
can have loops; therefore, it is not possible to ensure a finite delay
for the entry router or any relay router servicing a datagram.

4.2 Non-negligible Packet Size

In PGPS networks, routing nodes do not transmit packets until
a packet has completely arrived. Therefore, the number of packets
which will reach a downstream node is at the most equal to the
number of packets serviced by its upstream neighbors. Let à ! be
the maximum packet size at node � . The PGPS server does not
begin servicing a packet until the last bit has arrived.
For a packet-switched network

C !� ��A,��5�	09 ^ !� ��A,��5�	�; �
d � !)���]� �lH¯�°�±

. d� ! ��A,��5�	 (34)

Here, . d� ! ��A,��5�	 represents the number of packets serviced by
an upstream neighbor h for which � is in the shortest multipath to� in the interval

��54DPA�	
. Let

G
be the number of hops in a given

path from � to � ; h and h D
1 be two successive nodes. Then,

for a given path,

�
d\á 1

. d\á 1� d ��A,�$56	Ê7 C d� ��A,��5�	xD ^ d� ��A,�$56	
7 �

d�á 1

E . d�á 1� d ��A,��56	OD à:d�á 1 (35)

where, h 9
2
������������GÁ��A ¾ 5

and à:d�á 1 is the maximum length
of a packet transmitted by node h D

1. Here, the nodes h and� h D 1
	

are such that h .0/ d�á 1� .
For a PGPS system, the number of packets serviced for

5 Ç A
is given as

. !� ��A,��5�	â7
minã ��ä å¶Å °µæ

¸KE C !� ��AK��çè	8D ^ !� ��AK��ç
	JI;
�
é� ��5ODBçè	 ½ ;SG¢� à ! (36)

where
ç

represents the last time in the interval
E A,��5)I

at which
node � begins a busy period for destination � and the function

� é�
is a convex function which indicates the amount of service given
to destination � under a greedy regime.

Si
j
�
0
�
t
	Q7

min
V ��ä 0 Å t æ

¸KE
Ai

j
�
0
�
V
	+D

ri
j
�
0
�
V
	JI$;

GK
j
�
t
D

V
	 ½ ; K

�
Li (37)

With a greedy regime, the service to destination � is minimized
and is delayed by an appropriate amount, which is given by the
minimizing value of

ç
, denoted by

ç d !�f .

Si
j
�
t
	R7N¸,E

Ai
j
�
Vmin

	OD
ri
j
�
Vmin

	JI�;
GK

j
�
t
D

Vmin
	 ½ ; K

�
Li (38)

The backlog traffic for a destination � from � is the difference
between the number of packets that has arrived and the number of
packets serviced as in the previous case.

< !� � 0 �T56	:9=C !� � 0 ��5�	xD . !� � 0 �T56	 (39)

Applying similar argument as in the previous section, we have

< !� ��5�	09 3 !� ��5�	+; 2 !� ��5�	+; �
§ � �]� kl�¯µ°�± � §

E 3 §� ��56]; 2 §� ��5�	JI`D . !� ��56	 (40)

Substituting for .0!� ��56	 we have,

ê !�]«)¬�ë® Ù !�K«)¬�'ÚÂÙ !�]«iì d !�f �ÚÂí d�"«)¬'ÚÂì d !�f �Î�î"³ ï !Î �
§ � �]� kl]¯�°�± � §

Ð Ø §� «1¬��ÎÁÙ §� «1¬6)Ó
(41)

Thus, the maximum backlog is given by

ê !)Ã� «1¬�Í® Ù !� «1¬��ÚÂÙ !� «Lì d !�f 'Î�î"³ ï dRð � ÚÂí d� «)¬'ÚÂì d !�f Î �
§ � �]� kl�¯�°�± � §

Ð Ø §�]«)¬��ÎÁÙ §�K«)¬�LÓ
(42)

Having bound the worst-case backlog, we can use a similar
approach as in Eq. 31 to obtain bounds for the maximum path
delay. Since we are considering a PGPS system, the expression
for maximum path delay becomes

 !)Ã� ��56	�M / C !� ��56	ñ; ∆ !� ��56	 �
§ � !)���]� ml�¯µ°�±

E
1
;S< !LÃ� ��56	JI (43)

Substituting for the maximum backlog from Eq. 42 we obtain,

ª !)Ã� «)¬�óò ÝSÞ ª !� «1¬6�Î ∆ !� «)¬� �
§ � !L���]� ml�¯�°�±

×
1
ÎÁÙ !� «1¬6'Ú¼Ù !� «iì d !�f

Î�î"³ ï dRð � ÚÂí d�"«1¬4ÚÂì d !�f Î � Ð Ø §� «)¬��ÎÁÙ §� «)¬�LÓ1Ü
(44)

ª !LÃ� ò ÝSÞ ª !� «)¬��Î ∆ !� «1¬�6× 1 ÎÁÙ !� «)¬�'ÚÁÙ !� «iì d !�f Î�î"³ ï d�ð � ÚÂí d� «)¬'Ú¼ì d !�f Î �
§ � !)���]� ml ¯�°�±

Ð Ø §� «)¬��ÎÑÙ §� «)¬�LÓ1Ü
(45)

Here again, the excess delay experienced by a packet depends
on the network traffic as earlier. In addition, it also is a function
of the packet size and depends on the entire path from source to a
given destination node.

5. Conclusion
We have presented a new framework for the modeling of mul-

tipath routing in connectionless networks that dynamically adapt
to network congestion. We have demonstrated that it is possi-
ble to provide performance guarantees for the delivery of packets
in such networks. The basic routing protocol uses a short-term
metric based on hop-by-hop credits to reduce congestion and a
long term metric based on end-to-end path delays from a source
to a destination. Packet forwarding is done on a hop-by-hop
basis. Each node is modeled as a PGPS server which contains
destination-based permit buckets. A loop-free multipath routing
protocol has been proposed to regulate the traffic on each link
by monitoring the parameters of the destination-oriented permit
buckets. A worst-case delay bound under steady-state has been
derived for the above network model for both negligible and non-
negligible packet sizes.

Our work continues to study the dynamic behavior of
congestion-oriented shortest multipath routing, and to define how
destination-oriented routing mechanisms can be used to satisfy
performance requirements specified by the sources of packets.

References
[1] D. Bertsekas. Dynamic behavior of shortest path routing algorithms

for communication networks. IEEE Trans. Automat. Control, AC-
27, pp.60–74, 1982.

[2] D.P. Bertsekas and R.G. Gallager. Data Networks. Prentice Hall,
1992.

[3] R.L. Cruz. A calculus for network delay, Part II: Network Analysis.
IEEE Trans. Inform. Theory, Vol.37, pp.132–141, 1991.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of
a fair queueing algorithm. In ACM SIGCOMM, pp.1–12, 1989.

[5] J.J. Garcia-Luna-Aceves. Loop-free routing using diffusing com-
putation. IEEE/ACM Trans. Networking, Vol.1, No.1, pp.130–141,
Feb 1993.

[6] H.T Kung, Blackwell. T, and Chapman. A. Credit-based flow control
for ATM networks: credit update protocol, adaptive credit alloca-
tion, and statistical multiplexing. In ACM SIGCOMM, pp.101–14,
London, UK, Aug/Sept 1994.

[7] Shree Murthy and J.J. Garcia-Luna-Aceves. Congestion-oriented
shortest multipath routing. UCSC-Technical Report, Oct. 1995.

[8] C. Ozveren, R. Simcoe, and G. Varghese. Reliable and efficient
hop-by-hop flow control. In ACM SIGCOMM, pp.89–100, 1994.

[9] A.K. Parekh and R.G. Gallager. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case. IEEE/ACM Trans. Networking, Vol.1, No.3,
pp.344–357, June 1993.

[10] A.K. Parekh and Robert G. Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks: The
multiple node case. IEEE/ACM Trans. Networking, Vol.2, No.2,
pp.137–150, April 1994.

